Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer)

Folien: Suchverfahren

Autor: Stefan Edelkamp / Sven Schuierer

Institut für Informatik
Georges-Köhler-Allee
Albert-Ludwigs-Universität Freiburg

1 Überblick

Überblick

Problemstellung

Binäre Suche

Fibonacci-Suche

Exponentielle Suche

Interpolationssuche

Das Auswahlproblem

Selbstanordnende lineare Listen

2 Problemstellung

Problem: Gegeben Folge $F = (a_1, \ldots, a_n)$. Finde das Element mit Schlüssel k.

Rahmen:

```
class SearchAlgorithm {
  static int searchb(Orderable A[], Orderable k) {
    return search(A,k);
  }
}
```

Einfachstes Verfahren: Sequentielle, lineare Suche

Analyse:

- schlechtester Fall: n + 1

- im Mittel:
$$\frac{1}{n} \sum_{i=1}^{n} i = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}$$

3 Binäre Suche

Klasse

class BinarySearch extends SearchAlgorithm

Hauptroutine

```
public static int search(Orderable A[],Orderable k){
    /* Durchsucht A[1], ..., A[n] nach Element k und
        liefert den groessten Index i >= 1 mit
        A[i] <= k; 0 sonst */
    int n = A.length;
    return search(A, 1, n, k);
}</pre>
```

Rekursiver Aufruf

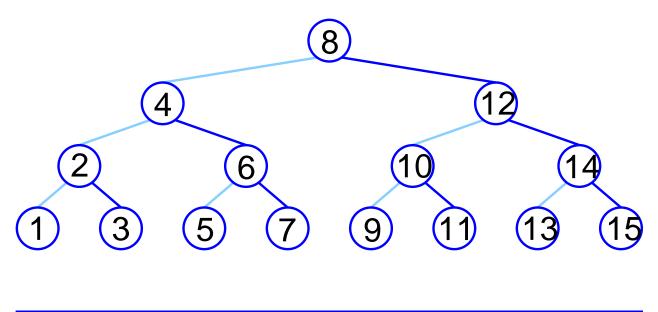
```
public static int search
  (Orderable A[], int 1, int r, Orderable k){
  /* Durchsucht A[1], ..., A[n] nach Element k
     und liefert den groessten Index
     l <= i <= r mit A[i] <= k; l-1 sonst */
   if (l > r) // Suche erfolglos
     return l-1;

int m = (l + r) / 2;
   if (k.less(A[m]))
     return search(A, l, m - 1, k);
   if (k.greater(A[m]))
     return search(A, m + 1, r, k);
   else // A[m] = k
     return m;
}
```

Binäre Suche ohne Rekursion


```
public static int search(Orderable A[],Orderable k){
   int n = A.length, l = 1, r = n;
   while (l <= r) {
      int m = (l + r) / 2;
      if (k.less(A[m])) { r = m - 1; }
      else if (k.greater(A[m])) { l = m + 1; }
      else return m;
   }
   return l-1;
}</pre>
```

Annahme: Binärer Vergl.-Operator mit 3 Ausgängen Worst Case $(n = 2^k - 1)$: bei $k = \log(n + 1)$ Vergl. Average Case $(n = 2^k - 1)$:



Analyse

Auswertung: $\sum_{i=1}^{k} i2^{i-1}$

$$1 \cdot 2^{k-1} = 2^k - 2^{k-1}$$

$$\vdots = \vdots$$

$$1 \cdot 2^1 + \dots + 1 \cdot 2^{k-1} = 2^k - 2$$

$$1 \cdot 2^0 + 1 \cdot 2^1 + \dots + 1 \cdot 2^{k-1} = 2^k - 1$$

$$= k2^k - 2^k + 1$$

Erwartungswert:

$$E = \left(\sum_{i=1}^{k} i2^{i-1}\right)/n$$

$$= (k2^{k} - 2^{k} + 1)/n$$

$$= ((n+1)\log(n+1))/n - (n+1)/n + 1/n$$

$$= (n+1)\log(n+1)/n \approx \log(n+1) - 1$$

4 Fibonacci-Suche

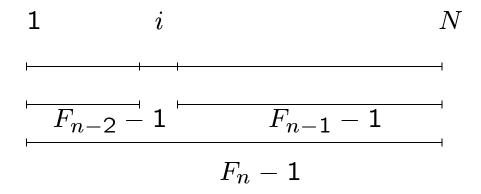
Erinnerung:

$$F_0 = 0$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$ für $(n \ge 2)$.

Verfahren:

Vergleiche den Schlüssel an $i = F_{n-2}$ mit k.

- A[i].key > k: Durchsuche linke $F_{n-2} 1$ Elemente
- A[i].key < k: Durchsuche rechte $F_{n-1} 1$ Elemente



Analyse: Durchsuchen von $F_n - 1$ Elementen in max. n Schlüsselvergleichen. Nun ist

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

 $\approx c \cdot 1.618^n$, mit einer Konstanten c .

Ergo: $C_{max}(N) = O(\log_{1.618}(N+1)) = O(\log_2 N)$

Implementation


```
public static int search(Orderable A[],Orderable k){
  /* Durchsucht A[1], ..., A[n] nach Element k und
       liefert den Index i mit A[i] = k; -1 sonst */
  int n = A.length-1;
  int fibMinus2 = 1, fibMinus1 = 1, fib = 2;
  while (fib - 1 < n) {
    fibMinus2 = fibMinus1;
    fibMinus1 = fib;
          = fibMinus1 + fibMinus2;
    fib
  int offset = 0;
  while (fib > 1) {
    /* Durchsuche den Bereich [offset+1,offset+fib-1]
       nach Schluessel k (Falls fib = 2, dann besteht
       [offset+1,offset+fib-1] aus einem Element!) */
    int m = min(offset + fibMinus2,n);
    if (k.less(A[m])) {
    // Durchsuche [offset+1,offset+fibMinus2-1]
               = fibMinus2;
        fibMinus1 = fibMinus1 - fibMinus2;
        fibMinus2 = fib - fibMinus1;
      else if (k.greater(A[m])) {
      // Durchsuche [offset+fibMinus2+1,offset+fib-1]
        offset = m;
              = fibMinus1;
        fib
        fibMinus1 = fibMinus2;
        fibMinus2 = fib - fibMinus1;
      }
      else // A[m] = k
        return m;
    return -1;
}
```

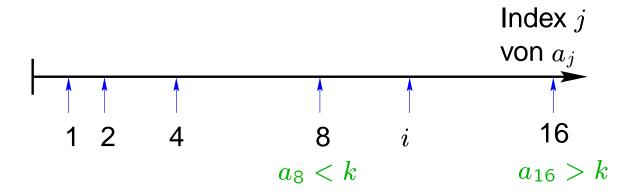
5 Exponentielle Suche

Annahme: n sehr groß, i mit $a_i = k$ klein

Denke-Zahl-Aus: Logarithmische Anzahl von Fragen

Eingabe: Sortierte Folge a_1, \ldots, a_n , Schlüssel k

Ausgabe: Index i mit $a_i = k$



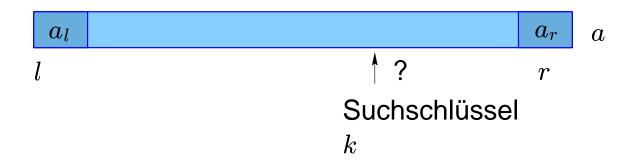
Analyse:

- $a_j \ge k$: $\lceil \log i \rceil$

- Binäre Suche: $2\lceil \log(i/2+1)\rceil$

Gesamtaufwand: $O(\log i)$

Idee: Suche von Namen im Telefonbuch, z.B. Bayer und Zimmermann



Erwartete Position von k (bei Gleichverteilung aller gespeicherten Schlüssel):

$$l + (r - l)\frac{k - a_l}{a_r - a_l}$$

Analyse:

- im schlechtesten Fall: O(n)
- im Mittel bei Gleichverteilung: $O(\log \log n)$

7 Das Auswahlproblem

Problem: Finde das i-kleinste Element in einer Liste F mit n Elementen

Naive Lösung

```
j = 0
while (j < i)
  bestimme kleinstes Element a_{min}
  entferne a_{min} aus F;
  j = j + 1;
return a_{min}</pre>
```

Anzahl der Schritte: $O(i \cdot n)$ für i = n/2 (Median): $O(n^2)$ (Sortieren ist besser)

Verfahren mit Heap

```
verwandle F in einen min-Heap
j = 0;
while (j < i)
  a_{min} = delete-min(F);
  j = j + 1;
return a_{min}</pre>
```

Anzahl der Schritte: $O(n + i \cdot \log n)$ für i = n/2 (Median): $O(n \log n)$

Implementation (Rahmen)

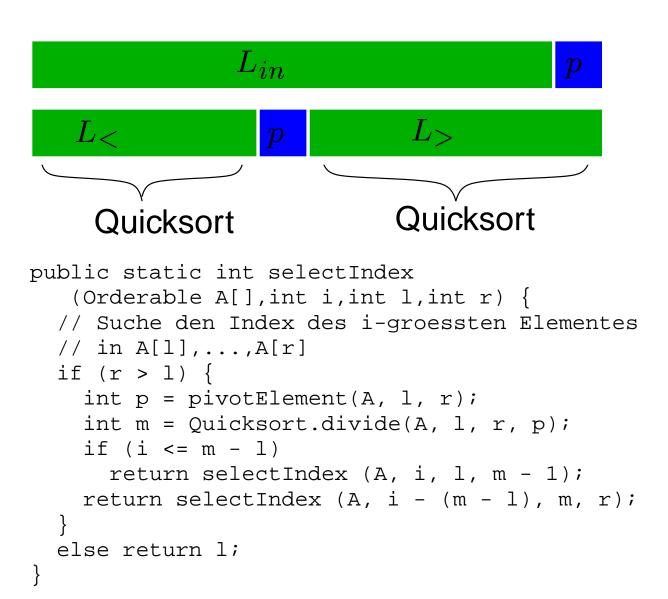
Basisklasse:

```
class SelectAlgorithm {
  static void swap (Object A[], int i, int j) {
    Object o = A[i]; A[i] = A[j]; A[j] = o;
  }
  static void select (Orderable A[], int i) {
    IthElement.select(A, i);
  }
  static void printArray (Orderable A[]) {
    for (int i = 1; i < A.length; i++)
        System.out.print(A[i].toString()+" ");
    System.out.println();
  }
}</pre>
```

In IthElement extends SelectAlgorithm:

Divide-&-Conquer Lösung

Idee: Aufteilung von $F = (a_1, \ldots, a_n)$ in zwei Gruppen bzgl. Pivotelement p (Quicksort)



Nur eine der zwei durch Aufteilung entstandenen Folgen wird weiter betrachtet.

Wahl des Pivotelements

1.
$$p = a_r$$
 folgt $T(n) \le T(n-1) + O(n)$

Laufzeit im schlimmsten Fall: $O(n^2)$

Beispiel: Auswahl des Minimums in aufsteigend sortierter Folge

2. Randomisiert

$$p = \text{ein zufälliges Element aus } a_1, \dots, a_n$$

erwartete Laufzeit: (Übung)

3. Median-of-Median

Input: eine Folge
$$F = (a_1, \ldots, a_n)$$

Output: ein Element $a \in F$, so daß

$$-\left|\{a_j|\ a_j>a\}\right|\geq 3(\lceil\frac{1}{2}\lceil\frac{n}{5}\rceil\rceil-2)\varepsilon 3n/10-6$$

$$-\left|\{a_j|\ a_j>a\}\right|\geq 3(\lceil\frac{1}{2}\lceil\frac{n}{5}\rceil\rceil-2)\geq 3n/10-6$$

 \Rightarrow Absplitten eines konstanten Teils $\alpha = 7\lceil n/10 \rceil + 6$

Median-of-Median

Algorithmus:

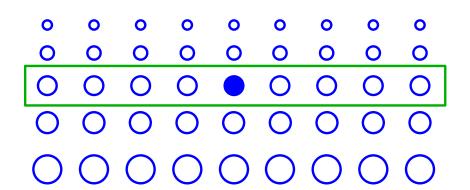
- 1) Unterteile F in 5er-Gruppen $G_1, \ldots, G_{\lceil n/5 \rceil}$
- 2) for all $j \in \{1, ..., \lceil n/5 \rceil\}$ sort (G_i)
- 3) for all $j \in \{1, ..., \lceil n/5 \rceil\}$ $b[j] \leftarrow \mathsf{Median}(G_j)$
- 4) return select(b, $\lceil n/10 \rceil$, 1, $\lceil n/5 \rceil$)

$$S(n) = \#$$
 Vergleiche Select
 $\leq G(n) + n + S(\lceil 7n/10 + 6 \rceil)$

$$G(n) = \#$$
 Vergleiche Median-of-Median $\leq c''n + S(\lceil n/5 \rceil)$

$$S(n) \le S(\lceil 7n/10 + 6 \rceil) + S(\lceil n/5 \rceil) + c'n$$

Satz: $S(n) \leq cn$



8 Selbstanordnende lineare Listen

MF-Regel (Move-to-front): Mache ein Element zum ersten Element der Liste, nachdem auf das Element (als Ergebnis einer erfolgreichen Suche) zugegriffen wurde.

T-Regel (Transpose): Vertausche ein Element mit dem unmittelbar vorangehenden, nachdem auf das Element zugegriffen wurde.

FC-Regel (Frequency Count): Nach jedem Zugriff auf ein Element wird dessen Häufigkeitszähler um 1 erhöht. Ferner wird die Liste nach jedem Zugriff neu geordnet und zwar so, daß die Häufigkeitszähler der Elemente in absteigender Reihenfolge sind.

Beispiel Liste $L = \{1, 2, 3, 4, 5, 6, 7\}.$

- a) Greife 10x nacheinander auf 1, ..., 7 zu.
- b) Greife 10x auf 1, dann zehnmal auf 2, usw. zu.

MTF: a)
$$\frac{\frac{7.8}{2} + 7.9.7}{10.7} = 6.7$$
 b) $\frac{\frac{7.8}{2} + 9.7.1}{10.7} = 1.3$

b)
$$\frac{\frac{7.8}{2} + 9.7.1}{10.7} = 1.3$$

Durchschnittliche (statischen) Zugriffskosten:

$$(10 \cdot \sum_{i=1}^{7} i)/70 = 4$$

Güte von Move-To-Front

Experimente: MTF besser als T und FC (Übung)

Ziel: Vergleich MTF mit beliebiger Strategie

 $s=s_1s_2s_3\dots s_m$: Folge von Suchanfragen A: Verfahren zur Selbstanordnung $C_A(s)=\sum_{i=1}^m C_A(s_i)$: Kosten zur Verarbeitung von s $V_A(s)=\sum_{i=1}^m V_A(s_i)$: # Vertauschungen nach vorn $H_A(s)=\sum_{i=1}^m H_A(s_i)$: # Vertauschungen n. hinten

Bemerkung: Für MTF-, T- und FC-Regel gilt: $H_{MTF}(s) = H_T(s) = H_{FC}(s) = 0$

Weiterhin: $V_A(s) < C_A(s) - m$.

Satz: Für jeden Algorithmus A zur Selbstanordnung von Listen und für jede Folge s von m Zugriffsoperationen gilt

$$C_{MTF}(s) \le 2 \cdot C_A(s) + H_A(s) - V_A(s) - m.$$

D.h. (grob) MTF-Regel höchstens doppelt so schlecht ist wie jeder andere Algorithmus zur Selbstanordnung von Listen.

Amortisierung

Ziel: Durchschnittlicher Aufwand für eine schlechtestmögliche Folge von Operationen

> Potentialmethode (Tarjan et al.) Bankkontoparadigma (Mehlhorn et al.)

Idee: Zahle für billige Operationen etwas mehr und verwende Erspartes, um für teure Operationen zu zahlen

Kosten: t_l wirkliche Kosten der l-ten Operation

Kontostand/Potential ϕ_l nach Ausführung der l-ten Operation

Amortisierte Zeit: a_l wirkliche Schrittzahl (Zeit) t_l plus die Differenz $\phi_l - \phi_{l-1}$ der Kontostände

$$\sum_{l=1}^{m} a_{l} = \sum_{l=1}^{m} t_{l} + \phi_{m} - \phi_{0}, \text{ also}$$

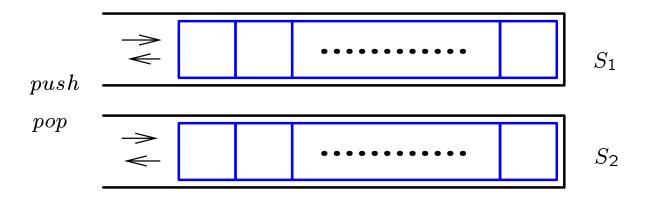
$$\sum_{l=1}^{m} t_{l} = \sum_{l=1}^{m} a_{l} + \phi_{0} - \phi_{m} \leq \sum_{l=1}^{m} a_{l}$$

Exkurs Binärzähler

 ϕ_l = # Einsen im Zähler

Opera-	Zähler-	$oldsymbol{t}_l$	ϕ_l	$a_l = t_l + \phi_l$
tion	stand			$-\phi_{l-1}$
0	0000		0	
1	0001	1	1	2
2	0010	2	1	2
3	0011	1	2	2
4	0100	3	1	3 + (1 - 2) = 2
5	0101	1	2	2
6	0110	2	2	2
7	0111	1	3	2
8	1000	4	1	4 + (1 - 3) = 2
9	1001	1	2	2
l	:	t_l	ϕ_l	$a_l = 2$
m	:			:

Exkurs: Simulation einer Schlange durch ← → ↑ zwei Stapel



AD

Implementation

Möglichkeit 1: S₂ Hilfsstapel

```
Q.push-tail(Schüssel x) {
  S_1.push(x)
Q.pop-head() {
  while (!S_1.empty())
     S_2.push(S_1.pop())
  x = S_2.pop()
  while (!S_2.empty())
     S_1.push(S_2.pop())
  return x
```

AD

Implementation

Möglichkeit 2: S_1 Eingabe-, S_2 Ausgabestapel

```
Q.push-tail(Schüssel \, x) \ \{S_1.push(x)\} \}
Q.pop-head() \ \{if \, S_2.empty() \ while \, (\, !S_1.empty() \, ) \ S_2.push(S_1.pop()) \}
return \, S_2.pop()
```

Potentialfunktion

Potentialfunktion Φ

Datenstruktur $D \mapsto \Phi(D)$

- t_l = wirkliche Kosten der l-ten Operation
- Φ_l = Potential nach Ausführung der l-ten Operation $(=\Phi(D_l))$
- a_l = amortisierte Kosten der l-ten Operation

Definition:

$$a_l = t_l + \Phi_l - \Phi_{l-1}$$

Move-To-Front Analyse

Kontostand: Sei L_l^A Liste nach l-ter Operation für Verfahren A, $bal(L_1, L_2)$ Anzahl der Inversionen in einer Liste L_1 bzgl. L_2 , d.h. $bal(L_1, L_2) = |\{(i,j) \mid pos_1(i) > pos_1(j) \text{ und } pos_2(i) < pos_2(j)\}|$

$$\phi_l = bal(L_l^A, L_l^{MF})$$

a)
$$\phi_0 = bal(L_0^A, L_0^{MF}) = 0$$
 und b) $\phi_l \varepsilon 0$

Beispiel:

 $L_1:4,3,5,1,7,2,6$

 $L_2: 3, 6, 2, 5, 1, 4, 7$

In L_2 : 3 vor 4, 6 vor 2, 6 vor 5, 6 vor 1, 6 vor 4, 6 vor 7, 2 vor 5, 2 vor 1, 2 vor 4, 2 vor 7, 5 vor 4, 1 vor 4, aber in L_1 der Reihe nach jeweils die umgekehrte Relation; alle anderen Paare stehen in L_2 und L_1 in derselben Anordnung.

$$\rightarrow bal(L_1, L_2) = 12 = bal(L_2, L_1).$$

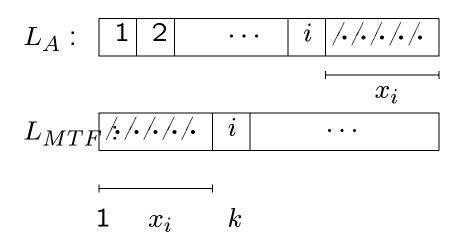
Umbenennung:

 $L_1: 1, 2, 3, 4, 5, 6, 7$

 L_2 : 2, 7, 6, 3, 4, 1, 5

Schlußfolgerung

Wissen:
$$t_l^A = i$$
 und $t_l^{MF} = k$



 x_i : # Elemente vor i in L_{MTF} und nach i in L_A $(k-1-x_i)$: # Elemente vor i in L_{MTF} und L_A

$$bal(L_A', L_{MTF}') =$$

 $bal(L_A, L_{MTF}) - x_i + (k - 1 - x_i) - V_A(s_l) + H_A(s_l).$

Damit:

$$a_{l} = t_{l} + bal(L_{A}', L_{MTF}') - bal(L_{A}, L_{MTF})$$

$$= k - x_{i} + (k - 1 - x_{i}) - V_{A}(s_{l}) + H_{A}(s_{l})$$

$$= 2(k - x_{i}) - 1 - V_{A}(s_{l}) + H_{A}(s_{l})$$

$$\leq 2i - 1 - V_{A}(s_{l}) + H_{A}(s_{l}).$$

$$\Rightarrow C_{MTF}(s) \leq \sum_{l=1}^{m} a_l + bal(L, L) - bal(L', L'')$$

$$\leq 2C_A(s) + H_A(s) - V_A(s) - m$$

Überblick, 2

Amortisierung, 18 Analyse, 6

Das Auswahlproblem, 11

Exkurs: Simulation einer Schlange durch zwei Stapel, 20 Exponentielle Suche, 9

Fibonacci-Suche, 7 Frequency Count, 16

Implementation, 8, 21, 22 Implementation (Rahmen), 12 Interpolations suche, 10

Median-of-Median, 15 Move-To-Front Analyse, 24

Potentialfunktion, 23 Problemstellung, 3

Selbstanordnende lineare Listen, 16

Wahl des Pivotelements, 14